INTRODUCTION:

CT provides direct visualization of anatomic structures in the abdomen and pelvis and is a fast imaging tool used to detect and characterize disease involving the abdomen and pelvis. Abdominal imaging begins at the diaphragm and extends to the umbilicus or iliac crests. CT uses x-rays and multiple detectors to create cross sectional images of the normal anatomy as well as demonstrate abnormal soft tissue densities, calcifications or fluid/gas patterns in the viscera or peritoneal space.

In general, ionizing radiation from CT should be avoided during pregnancy. Ultrasound is clearly a safer imaging option and is the first imaging test of choice, although CT after equivocal ultrasound has been validated for diagnosis. Clinician should exercise increased caution with CT imaging in children, pregnant women and young adults due to the risks of exposure to ionizing radiation. Screening for pregnancy as part of a work-up is suggested to minimize the number of unexpected radiation exposures for women of childbearing age.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

INDICATIONS FOR ABDOMEN CT:

Evaluation of suspicious known mass/tumors (unconfirmed diagnosis of cancer) for further evaluation of indeterminate or questionable findings:
- Initial evaluation of suspicious masses/tumors found only in the abdomen by physical exam or imaging study, such as ultrasound (US).
- Surveillance: One follow-up exam to ensure no suspicious change has occurred in a tumor in the abdomen. No further surveillance CT unless tumor(s) are specified as highly suspicious, or change was found on last follow-up CT, new/changing sign/symptoms or abnormal lab values.

Evaluation of known cancer for further evaluation of indeterminate or questionable findings, identified by physical examination or imaging exams such as ultrasound (US):
- Initial staging of known cancer
 - All cancers, excluding the following:
 - Basal cell carcinoma of the skin,
 - Melanoma without symptoms or signs of metastasis.
• Three (3) month follow-up of known abdominal cancer undergoing active treatment within the past year.
• Six (6) month follow-up of known abdominal cancer undergoing active treatment within the past year.
• Follow-up of known cancer of patient undergoing active treatment within the past year.
• Known cancer with suspected abdominal metastasis based on a sign, symptom or an abnormal lab value.
• Cancer surveillance: Active monitoring for recurrence as clinically indicated.

For evaluation of an organ or abnormality seen on previous imaging:
• For the evaluation of an organ enlargement such as splenomegaly or hepatomegaly as evidenced by physical examination or confirmed on any previous imaging study.

For evaluation of suspected infection or inflammatory disease:
• Suspected acute appendicitis (or severe acute diverticulitis) if abdominal pain and tenderness to palpation is present, and at LEAST one of the following:
 - WBC elevated
 - Fever
 - Anorexia or
 - Nausea and vomiting.
• Suspected peritonitis (from any cause) if abdominal pain and tenderness to palpation is present, and at LEAST one of the following:
 - Rebound, rigid abdomen, or
 - Severe tenderness to palpation present over entire abdomen.
• Suspected pancreatitis: can have pancreatitis without abnormally elevated amylase and lipase.
• Suspected inflammatory bowel disease (Crohn’s or ulcerative colitis) with abdominal pain, and persistent diarrhea, or bloody diarrhea.
• Suspected cholecystitis or retained gallstones with recent equivocal ultrasound.
• Suspected infection in the abdomen.

For evaluation of known infection or inflammatory disease follow up:
• Complications of diverticulitis with severe abdominal pain or severe tenderness or mass, not responding to antibiotic treatment, (prior imaging study is not required for diverticulitis diagnosis).
• Pancreatitis by history, (including pancreatic pseudocyst) with abdominal pain suspicious for worsening, or re-exacerbation.
• Known inflammatory bowel disease, (Crohn’s or ulcerative colitis) with recurrence or worsening signs/symptoms requiring re-evaluation.
• Any known infection that is clinically suspected to have created an abscess in the abdomen.
• Any history of fistula limited to the abdomen that requires re-evaluation, or is suspected to have recurred.
• Abnormal fluid collection seen on prior imaging that needs follow-up evaluation.
• Follow up for peritonitis (from any cause) if abdominal/pelvic pain and tenderness to palpation is present, and at LEAST one of the following:
 - Rebound, rigid abdomen, or
- severe tenderness to palpation present over entire abdomen.

- Hepatitis/hepatoma screening after ultrasound and alpha-fetoprotein (AFP) have been obtained and either elevated alpha-fetoprotein (AFP) is elevated or ultrasound is abnormal, equivocal or non-diagnostic.

- Known infection in the abdomen.

For evaluation of known or suspected vascular disease (e.g., aneurysms or hematomas)**:

- Evidence of vascular abnormality seen on imaging studies.

- Evaluation of suspected or known aneurysm limited to abdomen or in evaluating abdominal extent of aortic aneurysm**
 - Suspected or known aneurysm > 2.5 cm AND equivocal or indeterminate ultrasound results OR
 - Prior imaging (e.g. ultrasound) demonstrating aneurysm >2.5cm cm in diameter OR
 - Suspected complications of known aneurysm as evidenced by clinical findings such as new onset of abdominal pain.

- Scheduled follow-up evaluation of aorto/iliac endograft or stent (Abd/Pelvis CTA is preferred)
 - Asymptomatic at six (6) month intervals, for two (2) years
 - Symptomatic/complications related to stent graft – more frequent imaging may be needed

- Suspected retroperitoneal hematoma or hemorrhage.

For evaluation of trauma:

- For evaluation of trauma with lab or physical findings of intra-abdominal bleeding limited to the abdomen.

Pre-operative evaluation:

- For abdominal surgery or procedure.

Post-operative/procedural evaluation:

- Follow-up of known or suspected post-operative complication involving only the abdomen.

- A follow-up study to help evaluate a patient’s progress after treatment, procedure, intervention or surgery. Documentation requires a medical reason that clearly indicates why additional imaging is needed.

Indication for combination studies for the initial pre-therapy staging of cancer, OR ongoing tumor/cancer surveillance OR evaluation of suspected metastases:

- ≤5 concurrent studies to include CT or MRI of any of the following areas as appropriate depending on the cancer: Neck, Abdomen, Pelvis, Chest, Brain, Cervical Spine, Thoracic Spine or Lumbar Spine.
 - Cancer surveillance – Active monitoring for recurrence as clinically indicated

Other Indications for an Abdomen CT:

- Suspected adrenal mass based on diagnostic testing/imaging results, and/or a suspicious clinical presentation
• Persistent abdominal pain not explained by previous imaging/procedure
• Unexplained weight loss of 10% of body weight in two months (patient history is acceptable); with a second MD visit documenting some further decline in weight.
• Unexplained weight loss of 5% of body weight in six months confirmed by documentation to include the following
 o Related history and abdominal exam.
 o Chest x-ray
 o Abdominal Ultrasound
 o Lab tests, must include TSH
 o Colonoscopy if patient fifty plus (50+) years old
• Unexplained abdominal pain in patients seventy-five (75) years or older.
• Hernia with suspected complications (e.g. bowel obstruction or strangulation) or prior to surgical repair.
• Ischemic bowel.
• Suspected complete or high-grade partial small bowel obstruction limited to the abdomen.

Combination of studies with Abdomen CT:
• Abdomen CT/Pelvis CT/Chest CT/Neck MRI/Neck CT with MUGA – known tumor/cancer for initial staging or evaluation before starting chemotherapy or radiation treatment.

If an Abdomen/Pelvis CT combo is indicated and the Abdomen CT has already been approved, then the Pelvis CT may be approved.

ADDITIONAL INFORMATION RELATED TO ABDOMEN CT:

Combination studies for suspected appendicitis, peritonitis, diverticulitis, or inflammatory bowel disease (IBD):
• Combined Abdomen CT and Pelvis CT is usually ordered
• There are situations that a combo Abd/Pelvis CT was not ordered such as Pelvis CT previously approved and separate subsequent request for Abdomen CT, etc.

Ultrasound should be considered prior to a request for Abdomen CT for the following evaluations:
• Possible gallstones or abnormal liver function tests with gall bladder present.
• Evaluation of cholecystitis.
• Repeat CT studies of renal mass.
• Repeat CT Hepatic mass follow-up.
• Repeat CT for aortic aneurysm.

CT for organ enlargement - An abd/pelvis combo is most appropriate because it will demonstrate the kidneys and the ureters. Other organs may require an Abdomen CT or Pelvis CT only.

CT for suspected renal stones - An initial CT study is done to identify the size of the stone and rule out obstruction. (7 mm is the key size - less than that size the expectation is that it
After the initial CT study for kidney stone is done, the stone can be followed by x-ray or US (not CT). If a second exacerbation occurs/a new stone is suspected another CT would be indicated to access the size of stone and rule out obstruction.

CT Imaging for renal colic and hematuria: CT protocols include: “stone protocol” for detecting urinary tract calculi, “renal mass protocol” for characterizing known renal masses and CT urography for evaluating hematuria. Non-contrast CT can be used for detecting most ureteral and renal stones but sometimes an intravenous contrast agent is needed to determine the relationship of the calculus to the opacified ureter. CT is an effective imaging examination for diagnosing hematuria caused by urinary tract calculi, renal tumors and urothelial tumors.

CT Imaging for abdominal aortic aneurysms: If a pulsatile abdominal mass is found in an asymptomatic patient, abdominal ultrasonography is an inexpensive and noninvasive technique for initial evaluation. For further examination, CT may be performed to better define the shape and extent of the aneurysm and the local anatomic relationships of the visceral and renal vessels. CT has high level of accuracy in sizing aneurysms. CT angiography is not routinely required to assess abdominal aortic aneurysms and the decision to utilize conventional CT or CT angiography is based on factors unique to the individual case.

Risk of rupture in 6 years for an AAA < 4 cm is 1%. For a 4-5 cm AAA the risk of rupture increases to 1-3% per year and becomes 6-11% per year for AAA 5-7 cm in cross sectional diameter. >7 cm the risk of rupture goes to 7% per year.

Abdominal aneurysms and general guidelines for follow-up:
The normal diameter of the suprarenal abdominal aorta is 3.0 cm and that of the infrarenal is 2.0 cm. Aneurysmal dilatation of the infrarenal aorta is defined as diameter >/= 3.0 cm or dilatation of the aorta >/= 1.5x the normal diameter. - Initial evaluation of AAA is accurately made by ultrasound. Ultrasound can detect and size AAA, with the advantage of being relatively inexpensive, noninvasive and not require iodinate contrast. The limitations are that overlying bowel gas can obscure findings and the technique is operator dependent.

Recommended intervals for initial follow-up imaging (any modality) of ectatic aortas and abdominal aortas (follow up intervals may vary depending on comorbidities and the growth rate of the aneurysm):
- 2.5-2.9 cm:5yr
- 3.0-3.4 cm:3yr
- 3.5-3.9 cm:2yr
- 4.0-4.4 cm:1yr
- 4.5-4.9 cm:6 mo
- 5.0-5.5 cm:3-6 mo

CTA is not always the study of choice to following an aneurysm. Clinicians interested in documenting size in asymptomatic patient without the concern for complications or branch vessel patency may chose a non contrast CT.
Combination request of Abdomen CT/Chest CT - A Chest CT will produce images to the level of L3. Documentation for combo is required.

REDUCING RADIATION EXPOSURE:

CT urography - Utilization of appropriate imaging techniques can reduce radiation exposure in performance of CT urography. Some protocols may result in 15-35 mSv of exposure. In the article by Chow, et al. a technique involving administration of IV contrast in two boluses separated by a suitable time delay, allows nephrographic and excretory phases to be acquired in a single imaging pass. This allows for full non-contrast and contrast imaging to be obtained with two imaging passes.

Evaluation for appendicitis following clinical and laboratory evaluation -
Sonography of the right upper quadrant and pelvis followed by graded compression and color Doppler sonography of the right lower quadrant was used by Gaitini and colleagues as the initial imaging study in 420 consecutive patients referred for emergency evaluation of acute appendicitis. This method correctly diagnosed acute appendicitis in 66 of 75 patients (88%) and excluded it correctly in 312 of 326 patients (96%). It was inconclusive in 19 patient (<5%). Sensitivity, specificity, positive predictive value, negative predictive value and accuracy were 74.2%, 97%, 88%, 93%, and 92%, respectively and comparable to CT. Appropriate and timely diagnosis of acute appendicitis is needed. Negative laparotomy rates can range from 16% to 47% when based on clinical and laboratory data alone, while perforation rate can reach 35% when surgery is delayed. Appropriate initial imaging can lower the negative laparotomy rate to 6-10%. Ultrasound has a higher non-diagnostic rate (4%) vs. 0.8% for MDCT. In a prospective study operator experience and patient BMI did not affect diagnostic accuracy.

Consider the role of barium contrast studies - Effective doses for fluoroscopic SBFT (small bowel follow through) imaging ranged between 1.37-3.83 mSv for the right lower quadrant, central abdomen and pelvis, respectively. The findings by Jaffe, et al suggest a modified examination for Crohn’s disease indications would have lower effective doses than these. For MDCT the effective dose was 16.1 mSv. This indicates a 5 fold increase in the use of MDCT over SBFT.
For patients with Crohn's disease, efforts should be made to minimize the number of CT examinations, decrease the CT dose or consider MR Enterography. Limitations of SBFT include partial evaluation of extramucosal and extraluminal disease, impaired evaluation of small-bowel loops, especially those inaccessible in the deep pelvis.

Consider the role of capsule endoscopy - Retrospective comparison of capsule endoscopy (CE) to CT in patients with no evidence of a small-bowel stricture at barium examination was the focus of the article by Hara, et al. Studies were done for bleeding of unknown origin after colonoscopy and/or Gastroenterologist, inflammatory bowel disease or chronic abdominal pain.
CE was found to be more sensitive than CT examination in the 19 patients that underwent both. CE provides a complimentary and sensitive approach to the evaluation of the small bowel without radiation exposure. A negative examination does not completely rule out pathology.
Work up for distant metastasis in the initial evaluation of melanoma - Multiple studies, including the two authored by Miranda and Yancovitz below indicate that imaging studies, including Chest x-ray, Chest CT, Abdomen/Pelvis CT, Brain CT or Brain MRI in the absence of symptoms or findings of metastatic disease have extremely low yields (< 1%) in the survey evaluation of newly diagnosed melanoma, even in the presence of a positive sentinel node biopsy. The further work-up of the more common benign incidental finding (5-7%) on these studies lead to many more diagnostic tests, including surgery, which are seldom warranted.

Initial evaluation of abdominal aortic aneurysm (AAA) - Initial evaluation of AAA is accurately made by ultrasound. Risk of rupture in 6 years for an AAA < 4 cm is 1%. For a 4-5 cm AAA the risk of rupture increases to 1-3% per year and becomes 6-11% per year for AAA 5-7 cm in cross sectional diameter. >7 cm the risk of rupture goes to 7% per year. Chronic contained ruptures should meet the following criteria: known abdominal aortic aneurysm, previous pain symptoms that may have resolved; stable hemodynamic status with a normal HCT, CT scans showing retroperitoneal hemorrhage, and pathologic confirmation of organized hematoma.

Initial evaluation of adnexal masses - MRI is a sensitive and specific modality for evaluation of adnexal masses in comparison to CT. While improved diagnostic accuracy of MRI was not shown to be statistically significant in the study there was a trend to more accurate results with MRI over multi-detector (16-row) CT.

Evaluation for recurrence of ovarian cancer metastases - MRI was noted to be superior to PET/CT (with non-contrast CT) in the detection of recurrence of ovarian cancer in a small study (36 patients).

Pre-operative evaluation of primary rectal cancer - Abdomen CT may detect hepatic and extra-hepatic disease relevant to decision making and prognosis in rectal cancer but complete imaging through the pelvis does not add useful information. The area of the pelvis in pre-operative evaluation of rectal cancer is better defined by Pelvis MRI.
REFERENCES

Reviewed/Approved by Michael Pentecost, MD, Chief Medical Officer