INTRODUCTION:

Magnetic resonance angiography (MRA) or magnetic resonance venography (MRV) can be used as a first line investigation of intracranial vascular disease. It is an alternative to invasive intra-catheter angiography that was once the mainstay for the investigation of intracranial vascular disease. MRA/MRV may use a contrast agent, gadolinium, which is non-iodine-based, for better visualization. It can be used in patients who have history of contrast allergy and who are at high risk of kidney failure. A single authorization covers both MRA and MRV.

Three different techniques of MRA/MRV are: time of flight (both 2D and 3D TOF), phase contrast (PC), and contrasted enhanced angiography. Time of flight MRA takes advantage of the phenomena of flow related enhancement and is the preferred MRA technique due to the speed at which the exam can be acquired.

Initial Clinical Reviewers (ICRs) and Physician Clinical Reviewers (PCRs) must be able to apply criteria based on individual needs and based on an assessment of the local delivery system.

INDICATIONS FOR BRAIN (HEAD) MRA/MRV:

For evaluation of known intracranial vascular disease: 1-4
- To evaluate known intracranial aneurysm or arteriovenous malformation (AVM).
- To evaluate known vertebrobasilar insufficiency (VBI).
- To re-evaluate vascular abnormality visualized on previous brain imaging.
- For evaluation of known vasculitis.

For evaluation of suspected intracranial vascular disease: 6-12
- To screen for suspected intracranial aneurysm in patient whose parent brother, sister or child has history of intracranial aneurysm. Note: If there is a first degree familial history, repeat study is recommended every 5 years.
- Screening for aneurysm in polycystic kidney disease, Ehlers-Danlos syndrome, fibromuscular dysplasia, neurofibromatosis, or known aortic coarctation.
- To evaluate previously diagnosed subarachnoid hemorrhage (SAH).
- To evaluate suspected vertebrobasilar insufficiency (VBI) in patients with symptoms such as vision changes, vertigo, or abnormal speech.
- To evaluate suspected arteriovenous malformation (AVM) in patient with previous or indeterminate imaging study.
- For evaluation of suspected venous thrombosis (dural sinus thrombosis).
- Distinguishing benign intracranial hypertension (pseudotumor cerebri) from dural sinus thrombosis.
- For evaluation of pulsatile tinnitus for vascular etiology.
- For evaluation of suspected vasculitis with abnormal lab results suggesting acute inflammation or autoimmune antibodies.
- For evaluation of stroke risk in sickle cell patients (2 - 16 years of age) with a transcranial doppler velocity >200.
- Evaluation of neurological findings in sickle cell disease

Pre-operative evaluation for brain/skull surgery.

Post-operative/procedural evaluation:
- A follow-up study may be needed to help evaluate a patient’s progress after treatment, procedure, intervention or surgery. Documentation requires a medical reason that clearly indicates why additional imaging is needed for the type and area(s) requested.

Indications for Brain MRA/Neck MRA combination studies:
- For evaluation of patients who have had a stroke or transient ischemic attack (TIA) within the past 2 weeks.
- For evaluation of known or suspected vertebrobasilar insufficiency (VBI) in patients with symptoms such as vision changes, vertigo, or abnormal speech.
- For evaluation of known or suspected carotid or cerebral artery occlusion in patients with a sudden onset of one-sided weakness, abnormal speech, vision defects or severe dizziness.
- For evaluation of head trauma in a patient with closed head injury for suspected carotid or vertebral artery dissection.
- For evaluation of pulsatile tinnitus for vascular etiology.

ADDITIONAL INFORMATION RELATED TO BRAIN (HEAD) MRA

MRA and Cerebral Aneurysms – Studies that compared MRA with catheter angiography in detecting aneurysms found that MRA could find 77% - 94% of the aneurysms previously diagnosed by catheter angiography that were larger than 5 mm. For aneurysms smaller than 5 mm, MRI detected only 10% - 60% of those detected with catheter angiography. On the other hand, aneurysms that were missed by catheter angiography in patients with acute subarachnoid hemorrhage were detected with MRA due to the much larger number of projections available with MRA.

MRA and Cerebral Arteriovenous Malformations (AVM) – Brain arteriovenous malformation (AVM) may cause intracranial hemorrhage and is usually treated by surgery. 3D TOF-MRA is commonly used during the planning of radio-surgery to delineate the AVM nidus, but it is not highly specific for the detection of a small residual AVM after radio-surgery.

MRV - A pitfall of the TOF technique, particularly 3D TOF, is that in areas of slowly flowing blood, turbulence or blood which flows in the imaging plane there can be regions of absent or diminished signal. The signal loss can be confused with vascular occlusion or thrombi. To avoid this pitfall MRA performed after the intravenous administration of gadolinium based contrast agents is utilized at many facilities.
Intracranial magnetic resonance venography (MRV) is used primarily to evaluate the patency of the venous sinuses. The study can be performed with TOF, Phase contrast and IV contrast enhanced techniques. Delayed images to allow for enhancement of the venous system are required to obtain images when intravenous gadolinium enhanced studies are undertaken.

Saturation pulses are utilized in studies not undertaken with intravenous contrast to help eliminate flow related signal in a specified direction and thus display the desired arterial or venous structures on their own. In cranial applications, saturation pulses applied at the inferior margin of the imaging field eliminate signal from arterial flow in order to visualize the veins. Conversely, superior saturation pulses are used to eliminate venous flow related enhancement when evaluation of the arterial structures is desired.
REFERENCES

