Item/Service Description
A. General
1. Method of Operation
Magnetic Resonance Imaging (MRI), formerly called nuclear magnetic resonance (NMR), is a non-invasive method of graphically representing the distribution of water and other hydrogen-rich molecules in the human body. In contrast to conventional radiographs or computed tomography (CT) scans, in which the image is produced by x-ray beam attenuation by an object, MRI is capable of producing images by several techniques. In fact, various combinations of MRI image production methods may be employed to emphasize particular characteristics of the tissue or body part being examined. The basic elements by which MRI produces an image are the density of hydrogen nuclei in the object being examined, their motion, and the relaxation times, and the period of time required for the nuclei to return to their original states in the main, static magnetic field after being subjected to a brief additional magnetic field. These relaxation times reflect the physical-chemical properties of tissue and the molecular environment of its hydrogen nuclei. Only hydrogen atoms are present in human tissues in sufficient concentration for current use in clinical MRI.

2. General Clinical Utility
Overall, MRI is a useful diagnostic imaging modality that is capable of demonstrating a wide variety of soft-tissue lesions with contrast resolution equal or superior to CT scanning in various parts of the body.

Among the advantages of MRI are the absence of ionizing radiation and the ability to achieve high levels of tissue contrast resolution without injected iodinated radiological contrast agents. Recent advances in technology have resulted in development and Food and Drug Administration (FDA) approval of new paramagnetic contrast agents for MRI which allow even better visualization in some instances. Multi-slice imaging and the ability to image in multiple planes, especially sagittal and coronal, have provided flexibility not easily
available with other modalities. Because cortical (outer layer) bone and metallic prostheses do not cause distortion of MR images, it has been possible to visualize certain lesions and body regions with greater certainty than has been possible with CT. The use of MRI on certain soft tissue structures for the purpose of detecting disruptive, neoplastic, degenerative, or inflammatory lesions has now become established in medical practice.

Indications and Limitations of Coverage

B. Nationally Covered MRI Indications

1. **MRI**

 Although several uses of MRI are still considered investigational and some uses are clearly contraindicated (see subsection C), MRI is considered medically efficacious for a number of uses. Use the following descriptions as general guidelines or examples of what may be considered covered rather than as a restrictive list of specific covered indications. Coverage is limited to MRI units that have received FDA premarket approval, and such units must be operated within the parameters specified by the approval. In addition, the services must be reasonable and necessary for the diagnosis or treatment of the specific patient involved.

 a) Effective November 22, 1985:
 a. MRI is useful in examining the head, central nervous system, and spine.
 b. Multiple sclerosis can be diagnosed with MRI and the contents of the posterior fossa are visible.
 c. The inherent tissue contrast resolution of MRI makes it an appropriate standard diagnostic modality for general neuroradiology.

 b) Effective November 22, 1985:
 a. MRI can assist in the differential diagnosis of mediastinal and retroperitoneal masses, including abnormalities of the large vessels such as aneurysms and dissection.
 b. When a clinical need exists to visualize the parenchyma of solid organs to detect anatomic disruption or neoplasia, this can be accomplished in the liver, urogenital system, adrenals, and pelvic organs without the use of radiological contrast materials. When MRI is considered reasonable and necessary, the use of paramagnetic contrast materials may be covered as part of the study.
 c. MRI may also be used to detect and stage pelvic and retroperitoneal neoplasms and
 d. to evaluate disorders of cancellous bone and soft tissues.
 e. It may also be used in the detection of pericardial thickening.
 f. Primary and secondary bone neoplasm and aseptic necrosis can be detected at an early stage and monitored with MRI.
 g. Patients with metallic prostheses, especially of the hip, can be imaged in order to detect the early stages of infection of the bone to which the prosthesis is attached.

 c) Effective March 22, 1994:
 a. MRI may also be covered to diagnose disc disease without regard to whether radiological imaging has been tried first to diagnose the problem.

 d) Effective March 4, 1991:
a. MRI with gating devices and surface coils, and gating devices that eliminate distorted images caused by cardiac and respiratory movement cycles are now considered state of the art techniques and may be covered. Surface and other specialty coils may also be covered, as they are used routinely for high resolution imaging where small limited regions of the body are studied. They produce high signal-to-noise ratios resulting in images of enhanced anatomic detail.

C. Contraindications and Nationally Non-Covered Indications

1. Contraindications
The MRI is not covered when the following patient-specific contraindications are present:
MRI is not covered for patients with cardiac pacemakers or with metallic clips on vascular aneurysms unless the Medicare beneficiary meets the provisions of the following exceptions:
Effective July 7, 2011, the contraindications will not apply to pacemakers when used according to the FDA-approved labeling in an MRI environment

2. Nationally Non-Covered Indications
CMS has determined that MRI of cortical bone and calcifications, and procedures involving spatial resolution of bone and calcifications, are not considered reasonable and necessary indications within the meaning of section 1862(a)(1)(A) of the Act, and are therefore non-covered.

D. Other
Effective June 3, 2010, all other uses of MRI or MRA for which CMS has not specifically indicated coverage or non-coverage continue to be eligible for coverage through individual local MAC discretion.
NIA CLINICAL GUIDELINE FOR UPPER EXTREMITY MRI:

INTRODUCTION:

Magnetic resonance imaging shows the soft tissues and bones. With its multiplanar capabilities, high contrast and high spatial resolution, it is an accurate diagnostic tool for conditions affecting the joint and adjacent structures. MRI has the ability to positively influence clinicians’ diagnoses and management plans for patients with conditions such as primary bone cancer, fractures, and abnormalities in ligaments, tendons/cartilages, septic arthritis, and infection/inflammation.

INDICATIONS FOR UPPER EXTREMITY MRI (HAND, WRIST, ARM, ELBOW or SHOULDER) (plain radiographs must precede MRI evaluation):

Evaluation of suspicious mass/tumor (unconfirmed cancer diagnosis):
- Initial evaluation of suspicious mass/tumor found on an imaging study and needing clarification, or found by physical exam and remains non-diagnostic after x-ray or ultrasound is completed.
- Suspected tumor size increase or recurrence based on a sign, symptom, imaging study or abnormal lab value.
- Surveillance: One follow-up exam if initial evaluation is indeterminate and lesion remains suspicious for cancer. No further surveillance unless tumor is specified as highly suspicious, or change was found on last imaging.

Evaluation of known cancer:
- Initial staging of known cancer in the upper extremity.
- Follow-up of known cancer of patient undergoing active treatment within the past year.
- Known cancer with suspected upper extremity metastasis based on a sign, symptom, imaging study or abnormal lab value.
- Prior cancer surveillance: Once per year (last test must be over 10 months ago before new approval) for surveillance of known cancer.

For evaluation of known or suspected infection or inflammatory disease (e.g. osteomyelitis):
- Further evaluation of an abnormality or non-diagnostic findings on prior imaging.
- With abnormal physical, laboratory, and/or imaging findings.
- Known or suspected (based upon initial workup including x-ray) of septic arthritis or osteomyelitis.

For evaluation of suspected (AVN) avascular necrosis (i.e. aseptic necrosis, Legg-Calvé-Perthes disease in children):
- Further evaluation of an abnormality or non-diagnostic findings on prior imaging.

For evaluation of suspected or known Auto Immune Disease, (e.g. Rheumatoid arthritis):
- Known or suspected auto immune disease and non-diagnostic findings on prior imaging.

For evaluation of known or suspected fracture and/or injury:
- Further evaluation of an abnormality or non-diagnostic findings on prior imaging.
- Suspected fracture when imaging is negative or equivocal.
- Determine position of known fracture fragments/dislocation.

For evaluation of persistent pain and initial imaging (e.g. x-ray) has been performed:
- Chronic pain and/or persistent tendonitis unresponsive to conservative treatment, which include medical therapy (may include physical therapy or chiropractic treatments) and/or physician supervised home exercise of at least four (4) weeks.

Pre-operative evaluation.

Post-operative/procedural evaluation:
- When imaging, physical or laboratory findings indicate joint infection, delayed or non-healing or other surgical/procedural complications.
- A follow-up study may be needed to help evaluate a patient’s progress after treatment, procedure, intervention or surgery. Documentation requires a medical reason that clearly indicates why additional imaging is needed for the type and area(s) requested.

Other indications for an Upper Extremity (Hand, Wrist, Arm, Elbow, or Shoulder) MRI:
- Abnormal bone scan and x-ray is non-diagnostic or requires further evaluation.
- MR arthrogram.
- To assess status of osteochondral abnormalities including osteochondral fractures, osteochondritis dissecans, treated osteochondral defects where physical or imaging findings suggest its presence.

Additional indications for Shoulder MRI:
- For evaluation of known or suspected impingement, rotator cuff tear, or labral tear (SLAP lesion, Bankart lesion).
- Known or suspected impingement or when impingement test is positive.
- Impingement or rotator cuff tear indicated by positive Neer's sign, Hawkin’s sign or drop sign.
- Status post prior rotator cuff repair with suspected re-tear and findings on prior imaging are indeterminate.
- For evaluation of brachial plexus dysfunction (brachial plexopathy/thoracic outlet syndrome).
- For evaluation of recurrent dislocation.

Additional indications for Wrist MRI:
- For evaluation of suspected ligament injury with evidence of wrist instability on examination or evidence of joint space widening on x-ray
- For suspected TFCC (triangular fibrocartilage complex) injury.

ADDITIONAL INFORMATION RELATED TO UPPER EXTREMITY MRI:

MRI imaging – Metal devices or foreign body fragments within the body, such as indwelling pacemakers and intracranial aneurysm surgical clips that are not compatible with the use of MRI, may be contraindicated. Other implanted metal devices in the patient as well as external devices such as portable O₂ tanks may also be contraindicated.
Conservative Therapy: (musculoskeletal) should include a multimodality approach consisting of a combination of active and inactive components. Inactive components such as rest, ice, heat, modified activities, medical devices, (such as crutches, immobilizer, metal braces, orthotics, rigid stabilizer or splints, etc and not to include neoprene sleeves), medications, injections (bursal, and/or joint, not including trigger point), and diathermy, can be utilized. Active modalities may consist of physical therapy, a physician supervised home exercise program**, and/or chiropractic care. NOTE: for joint and extremity injuries, part of this combination may include the physician instructing patient to rest the area or stay off the injured part.

Home Exercise Program - (HEP) – the following two elements are required to meet guidelines for completion of conservative therapy:

- Information provided on exercise prescription/plan AND
- Follow up with member with information provided regarding completion of HEP (after suitable 4 week period), or inability to complete HEP due to physical reason, i.e. increased pain, inability to physically perform exercises. (Patient inconvenience or noncompliance without explanation does not constitute “inability to complete” HEP).

Rotator Cuff Tears – 3.0 Tesla MRI has been found valuable for the detection of partial thickness rotator cuff tendon tears and small rotator cuff tendon tears. It is especially useful in detecting the partial tears due to increased spatial resolution. Increased spatial resolution results in precise measurements of rotator cuff tendon tears in all 3 planes and it also reduces acquisition time which reduces motion artifacts. 3.0 Tesla makes it possible to adequately evaluate tendon edges and avoid under-estimation of tears. MRI is less invasive than MR arthrography and it is faster and less expensive. MRI may be useful in the selection of patients that may benefit from arthroscopic.

MRI and Occult Fractures – Magnetic resonance imaging may help to detect occult fractures of the elbow when posttraumatic elbow effusions are shown on radiographs without any findings of fracture. Effusions may be visualized on radiographs as fat pads, which can be elevated by the presence of fluid in the joint caused by an acute fracture. MRI may be useful when effusions are shown on radiographs without a visualized fracture, but there is a clinical suspicion of a lateral condylar or radial head fracture.

MRI and Avascular Necrosis – Sports such as racquetball and gymnastics may cause repeated microtrauma due to the compressive forces between the radial head and capitellum. Focal avascular necrosis and osteochondritis dissecans of the capitellum may result. MRI can be used to evaluate the extent of subchondral necrosis and chondral abnormalities. The images may also help detect intraarticular loose bodies.

MRI and Acute Osseous Trauma – Many elbow injuries result from repetitive microtrauma rather than acute trauma and the injuries are sometimes hard to diagnose. Non-displaced fractures are not always evident on plain radiographs. When fracture is suspected, MRI may improve diagnostic specificity and accuracy. T1-weighted images can delineate morphologic features of the fracture.
MRI and Brachial Plexus - MRI is the only diagnostic tool that accurately provides high resolution imaging of the brachial plexus. The brachial plexus is formed by the cervical ventral rami of the lower cervical and upper thoracic nerves which arise from the cervical spinal cord, exit the bony confines of the cervical spine, and traverse along the soft tissues of the neck, upper chest, and course into the arms.
REFERENCES

