INTRODUCTION:

Magnetic resonance angiography (MRA) generates images of the arteries that can be evaluated for evidence of stenosis, occlusion or aneurysms. It is used to evaluate the arteries of the abdominal aorta and the renal arteries. Contrast enhanced MRA requires the injection of a contrast agent which results in very high quality images. MRA does not use ionizing radiation, allowing MRA to be used for follow-up evaluations. MRA is not used as a screening tool, e.g. evaluation of asymptomatic patients without a previous diagnosis.

INDICATIONS FOR ABDOMEN MRA:

For evaluation of known or suspected abdominal vascular disease:

- For known large vessel diseases (abdominal aorta, inferior vena cava, superior/inferior mesenteric, celiac, splenic, renal or iliac arteries/veins), e.g., aneurysm, dissection, arteriovenous malformations (AVMs), and fistulas, intramural hematoma, and vasculitis.
- Evidence of vascular abnormality seen on prior imaging studies.
- Evaluation of suspected or known aortic aneurysm**:
 - Suspected or known aneurysm > 2.5 cm AND equivocal or indeterminate ultrasound results OR
 - Prior imaging (e.g. ultrasound) demonstrating aneurysm >2.5cm cm in diameter OR
 - Suspected complications of known aneurysm as evidenced by signs/symptoms such as new onset of abdominal or pelvic pain.
- Suspected retroperitoneal hematoma or hemorrhage.
- Suspected renal vein thrombosis in patient with known renal mass.
- For evaluation of mesenteric ischemia/ischemic colitis.
- Venous thrombosis if previous studies have not resulted in a clear diagnosis.
- Vascular invasion or displacement by tumor.
- For evaluation of hepatic blood vessel abnormalities (aneurysm, hepatic vein thrombosis, stenosis post transplant).
- For evaluation of splenic artery aneurysm.
- Kidney failure or renal insufficiency if initial evaluation performed with Ultrasound is inconclusive.
- For evaluation of known or suspected renal artery stenosis or resistant hypertension demonstrated by any of the following:
 - Unsuccessful control after treatment with three (3) or more anti-hypertensive medication at optimal dosing.
- Acute elevation of creatinine after initiation of an angiotension converting enzyme inhibitor, (ACE inhibitor) or Angiotension receptor blocker, (ARB).
- Asymmetric kidney size noted on ultrasound.
- Onset of hypertension in a person younger than age 30 without any other risk factors or family history of hypertension.
- New onset of hypertension after age 55 (>160/100).
- Acute rise in blood pressure in a person with previously stable blood pressures.
- Flash pulmonary edema without identifiable causes.
- Malignant hypertension.

Pre-operative evaluation:
- Evaluation of interventional vascular procedures for luminal patency versus restenosis due to conditions such as atherosclerosis, thromboembolism, and intimal hyperplasia.
- For pretransplant evaluation of either liver or kidney.

Post-operative or post-procedural evaluation:
- Evaluation of endovascular/interventional abdominal vascular procedures for luminal patency versus restenosis due to conditions such as atherosclerosis, thromboembolism, and intimal hyperplasia.
- Evaluation of post-operative complications, e.g. pseudoaneurysms, related to surgical bypass grafts, vascular stents and stent-grafts in the peritoneal cavity.
- Follow-up for post-endovascular repair (EVAR) or open repair of abdominal aortic aneurysm (AAA). Routine, baseline study (post-op/intervention) is warranted within 1-3 months.
 - Asymptomatic at six (6) month intervals, for two (2) years.
 - Symptomatic/complications related to stent graft – more frequent imaging may be needed.
- Follow-up study may be needed to help evaluate a patient’s progress after treatment, procedure, intervention or surgery. Documentation requires a medical reason that clearly indicates why additional imaging is needed for the type and area(s) requested.

Additional Information Related to Abdomen MRA:

MRI imaging – Metal devices or foreign body fragments within the body, such as indwelling pacemakers and intracranial aneurysm surgical clips that are not compatible with the use of MRI, may be contraindicated. Other implanted metal devices in the patient as well as external devices such as portable O₂ tanks may also be contraindicated.

MRI Follow-up for post-endovascular repair (EVAR) - CT is generally the study of choice in this evaluation due to improved spatial resolution and less artifact from components of the stent graft.

Abd/Pelvis MRA & Lower Extremity MRA Runoff Requests: Two (2) auth requests are required, one Abd MRA, CPT code 74185 and one for Lower Extremity MRA, CPT code 73725. This will provide imaging of the abdomen, pelvis and both legs.
MRA and Abdominal Aortic Aneurysm – Endovascular repair is an alternative to open surgical repair of an abdominal aortic aneurysm. It has lower morbidity and mortality rates and is minimally invasive. In order to be successful, it depends on precise measurement of the aneurysm and involved vessels. MRA with gadolinium allows visualization of the aorta and major branches and is effective and reliable for use in planning the placement of the endovascular aortic stent graft. MRA is also used for the detection of postoperative complications of endovascular repair.

Abdominal Aneurysms and general Guidelines for follow-up:
The normal diameter of the suprarenal abdominal aorta is 3.0 cm and that of the infrarenal is 2.0 cm. Aneurysmal dilatation of the infrarenal aorta is defined as diameter \(\geq 3.0 \) cm or dilatation of the aorta \(\geq 1.5 \) the normal diameter\(^1\). Initial evaluation of AAA is accurately made by ultrasound. Ultrasound can detect and size AAA, with the advantage of being relatively inexpensive, noninvasive and not require iodinate contrast\(^1\). The limitations are that overlying bowel gas can obscure findings and the technique is operator dependent.\(^1\)

Recommended intervals for initial follow-up imaging of ectatic aortas and Abdominal aortas (follow up intervals may vary depending on comorbidities and the growth rate of the aneurysm)\(^1\):
- 2.5-2.9 cm : \(\ldots \) 5yr
- 3.0-3.4 cm : \(\ldots \) 3yr
- 3.5-3.9 cm : \(\ldots \) 2yr
- 4.0-4.4 cm : \(\ldots \) 1yr
- 4.5-4.9 cm : \(\ldots \) 6 mo
- 5.0-5.5 cm : \(\ldots \) 3-6 mo

MRA and Renal Artery Stenosis – Renal artery stenosis is the major cause of secondary hypertension. It may also cause renal insufficiency and end-stage renal disease. Atherosclerosis is one of the common causes of this condition, especially in older patients with multiple cardiovascular risk factors and worsening hypertension or deterioration of renal function. Navigator-gated MR angiography is used to evaluate the renal arteries and detect renal artery stenosis.

MRA and Renal Vein Thrombosis – Renal vein thrombosis is a common complication of nephritic syndrome and often occurs with membranous glomerulonephritis. Gadolinium-enhanced MRA can demonstrate both the venous anatomy and the arterial anatomy and find filling defects within renal veins. The test can be used for follow-up purposes as it does not use ionizing radiation.
REFERENCES

